O que são as dimensões do espaço?

O que são as dimensões do espaço? São as possibilidades de obter as medidas de largura, comprimento e profundidade em figuras e sólidos geométricos.

Imprimir
A+
A-
Escutar texto
Compartilhar
Facebook
X
WhatsApp
Play
Ouça o texto abaixo!
1x

A dimensão está relacionada à possibilidade de obter medidas em objetos definidos dentro de um espaço. É possível que alguns objetos não possam ser definidos em determinados espaços por causa do número de dimensões de que eles necessitam e do que é oferecido por esses espaços. Para que a construção de um objeto seja possível, é necessário que ele possua um número de dimensões igual ou inferior ao espaço.

Não pare agora... Tem mais depois da publicidade ;)

Perceba que a palavra espaço não é usada apenas para o espaço tridimensional, mas para qualquer “lugar” que possua dimensões suficientes para a construção de objetos. Assim, as dimensões do espaço e os próprios espaços são os seguintes:

Espaço unidimensional e primeira dimensão

Quando dizemos que um espaço, ou objeto, possui apenas uma dimensão, estamos afirmando que somente é possível realizar um tipo de medida nesse espaço ou objeto. O espaço unidimensional é a reta.

Como as retas são conjuntos de pontos alinhados que não fazem curva, são infinitas e não apresentam espaços entre os pontos, então, não existe possibilidade de medir a largura delas. Assim, apenas é possível medir comprimentos de partes delas, chamadas segmentos de reta.

Dessa forma, a reta é o espaço que possui apenas uma dimensão. Os objetos que podem ser construídos nesse espaço são:

1 – Ponto;

2 – Segmentos de reta;

3 – Semirretas e

4 – Outras retas.

Suponha que seja necessário construir um retângulo. Essa figura geométrica possui largura e comprimento, que são duas medidas perpendiculares. Observe que, se colocarmos um dos lados do retângulo sobre o espaço unidimensional, todo o seu restante estará fora do espaço. Para construir essa figura geométrica, será necessário que exista outro espaço que contemple também a sua largura.

Retângulo sobre a reta
Retângulo sobre a reta

Espaço bidimensional e segunda dimensão

Quando o espaço é bidimensional, os objetos que podem ser definidos nele possuem até duas dimensões. Nesse tipo de espaço, é possível construir figuras que possuem comprimento e largura. O espaço bidimensional é o plano.

Algumas das figuras geométricas que podem ser definidas no plano são:

1 – Ponto;

2 – Retas, segmentos de reta e semirretas;

3 – Polígonos em geral;

4 – Círculos e circunferências.

Assim, o retângulo da imagem anterior pode ser definido no plano, que é o espaço bidimensional. A Geometria plana tem como base o espaço bidimensional, portanto, tudo o que é estudado nessa disciplina é construído sobre um plano.

Imagine agora um plano sobre o qual é colocada uma das bases de um prisma. A base do prisma pode ser definida no plano, mas o restante do sólido geométrico, não. Para que o prisma seja completamente construído, é necessário um espaço no qual exista a possibilidade de construção de objetos com profundidade.

Prisma sobre o plano
Prisma sobre o plano

Espaço tridimensional e terceira dimensão

O espaço tridimensional é composto pelo que conhecemos apenas como espaço. Esse espaço é infinito para todas as direções, e nele podem ser definidas todas as figuras e sólidos geométricos que são comumente estudados durante o Ensino Médio.

Dessa maneira, é possível definir no espaço tridimensional todas as figuras geométricas que possuem comprimento, largura e profundidade. Em outras palavras, todas as figuras que possuem três dimensões ou menos.

Quarta dimensão

Todo objeto que esteja incluído em um espaço tridimensional onde o tempo também conta como medida, na realidade, está em um espaço com quatro dimensões. O tempo é a medida responsável pela quarta dimensão.

É possível dizer ainda que as dimensões são infinitas (existem também a quinta, sexta, sétima etc.), mas não podem ser percebidas pelos sentidos humanos. Por isso, elas não são representadas geometricamente ou não ganham uma representação tão evidente quanto as outras.


Por Luiz Paulo Moreira
Graduado em Matemática

Os óculos usados para ter a sensação de 3D nas salas de cinema utilizam-se dos conceitos de dimensões do espaço
Os óculos usados para ter a sensação de 3D nas salas de cinema utilizam-se dos conceitos de dimensões do espaço
Escritor do artigo
Escrito por: Luiz Paulo Moreira Silva Escritor oficial Brasil Escola
Deseja fazer uma citação?
SILVA, Luiz Paulo Moreira. "O que são as dimensões do espaço?"; Brasil Escola. Disponível em: /o-que-e/matematica/o-que-sao-as-dimensoes-espaco.htm. o em 23 de maio de 2025.
Copiar

Artigos Relacionados


O que são polígonos convexos e regulares?

O que são polígonos convexos e regulares? Essa categorização baseia-se no formato e medidas de lados e ângulos.

O que é círculo?

O círculo de centro P e raio r é o conjunto de pontos que estão a uma distância igual ou inferior a r de P. Círculo e circunferência são figuras geométricas distintas.

O que é o teorema de Pitágoras?

O que é o teorema de Pitágoras? É uma das relações que podem ser feitas entre os lados de um triângulo retângulo.

O que é plano cartesiano?

O plano cartesiano é composto por infinitos pontos. As coordenadas de cada ponto são representadas por um par ordenado.

O que é poliedro?

Poliedros são sólidos geométricos limitados por polígonos. Os poliedros são classificados em pirâmides ou prismas, que são variações da mesma definição.

O que é polígono?

Para entender o que é polígono, deve-se saber que essa figura é uma linha fechada inteiramente formada por segmentos de reta que não se cruzam, exceto em suas extremidades.

O que é prisma?

O que é prisma? Trata-se de um sólido geométrico formado por segmentos de reta paralelos cujas extremidades são polígonos também paralelos.

O que é reta?

O que é reta? Trata-se de um objeto matemático presente em algum espaço que origina semirretas e segmentos de reta.

Ponto, reta, plano e espaço

Ponto, reta, plano e espaço são noções geométricas que não possuem definição, mas dão base para todo o conhecimento existente sobre a Geometria.

Dimensões do espaço

As dimensões estão ligadas à possibilidade de medir objetos em um espaço. Cada espaço pode ser uni, bi, tri ou multidimensional!